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Stochastic resonance~SR! is a phenomenon wherein the response of a nonlinear system to a weak periodic
input signal is optimized by the presence of a particular level of noise. Recently, we presented a method and
theory for characterizing SR-type behavior in excitable systems with aperiodic~i.e., broadband! input signals
@Phys. Rev. E52, R3321~1995!#. We coined the termaperiodic stochastic resonance~ASR! to describe this
general type of behavior. In that earlier study, we demonstrated ASR in the FitzHugh-Nagumo neuronal model.
Here we demonstrate ASR in three additional systems: a bistable-well system, an integrate-and-fire neuronal
model, and the Hodgkin-Huxley~HH! neuronal model. We present computational and theoretical results for
each system. In the context of the HH model, we develop a general theory for ASR in excitable membranes.
This work clearly shows that SR-type behavior is not limited to systems with periodic inputs. Thus, in general,
noise can serve to enhance the response of a nonlinear system to a weak input signal, regardless of whether the
signal is periodic or aperiodic.@S1063-651X~96!02611-6#

PACS number~s!: 87.22.Jb, 05.40.1j

I. INTRODUCTION

Stochastic resonance~SR! is a phenomenon in which the
response of a nonlinear system to a weak periodic input sig-
nal is optimized by the presence of a particular level of noise
@1#. The notion of SR was originally proposed as a possible
explanation for periodic recurrences in global climate dy-
namics@2#. Since then, SR has been examined experimen-
tally in a wide variety of systems, including electronic sys-
tems @3#, optical systems@4#, magnetic systems@5,6#,
mechanical systems@7#, and biological systems@8–10#.
Moreover, theories of SR have been developed for multi-
stable@11# and excitable@12# systems, as well as threshold-
crossing detectors@13#. These developments have pointed to
the possible beneficial effects of noise on the dynamics of
nonlinear systems. It is important to note, however, that all
of the aforementioned work has been restricted to systems
with periodic inputs. This focus has served to limit the ap-
plicability of SR to practical situations, given that real-world
external signals are typically not periodic.

Recently, we developed a method for characterizing SR-
type behavior in excitable systems with aperiodic~arbitrary!
inputs @14# that emphasizes the ‘‘shape matching’’ between
the input and output signals. For this general type of behav-
ior, we coined the termaperiodic stochastic resonance
~ASR!. We have demonstrated ASR computationally in the
FitzHugh-Nagumo~FHN! neuronal model@14# and in a sum-
ming network of FHN model neurons@15#. We have also
developed a theory to account for these results@14,15#. More
recently, we have demonstrated ASR experimentally in rat
cutaneous sensory neurons@16#. These developments@17#
indicate that noise can serve to enhance the response of a
nonlinear system to a weak input signal, regardless of
whether the signal is periodic or aperiodic. In this paper, we
extend our work on ASR to three additional systems: a
bistable-well system, an integrate-and-fire neuronal model,
and the Hodgkin-Huxley~HH! neuronal model. Previous
studies have considered bistable-well systems with nonperi-

odic input signals@18,19#. However, in contrast with the
present work and our earlier ASR studies@14–16#, these in-
vestigations@18,19# concentrated on distorted harmonic sig-
nals and used single-frequency measures to characterize SR.

This paper is organized as follows. In Sec. II, we describe
the measures used to characterize ASR. In Secs. III and IV,
we present computational and theoretical results for a
bistable-well system and an integrate-and-fire neuronal
model, respectively. In Sec. V, we present numerical results
for the HH model and a general theory for ASR in excitable
membranes. We show that the theory is applicable to both
the FHN model and the HH model. Finally, in Sec. VI, we
discuss the implications of the presented results and describe
possible technological and bioengineering applications of
ASR.

II. ASR MEASURES

In general, the phenomenon of SR indicates that the flow
of information through a system~i.e., the coherence between
the input stimulus and the system response! is optimized by
the presence of a particular level of noise@1,20–22#. In line
with this operational definition, SR has typically been char-
acterized by examining the output signal-to-noise ratio,
which is computed from the power spectrum and defined as
the ratio of the strength of the signal peak~i.e., its area! to
the mean amplitude of the background noise at the input
signal frequency@9,12,20#. In excitable systems, SR has also
been characterized by examining the modes in the interspike
interval histograms@23# located at integer multiples of the
input signal period@8,9,24#. Both of these methods assess the
coherence of the response of the system with the input signal
frequency. Thus these techniques are clearly inappropriate
for systems with aperiodic inputs.

In Ref. @14#, we proposed two cross-correlation measures
for characterizing ASR: the power norm and the normalized
power norm. We used these measures to characterize ASR in
the FHN model@14#. Here we demonstrate the generality of
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these measures for any system that can make transitions be-
tween different states. We characterize the system’s response
to an arbitrary input signal plus Gaussian white noise as the
mean transition rate~averaged over a time window! between
these states.

The power normC0 is defined as

C05max$S~ t !R~ t1t!%, ~1!

whereS(t) is the aperiodic~zero-mean! input signal,R(t) is
the response of the system characterized by the mean transi-
tion rate,t is a time lag, and the overbar denotes an average
over time.@For ASR, the exact form ofS(t) is unimportant,
provided its variations occur on a time scale that is slower
than the characteristic time~s! of the system under study.#
Note thatC0 is a scalar measure that quantifies the maximum
in the input-output cross-correlation function which is a
function of the time lagt.

The normalized power normC1 ~or cross-correlation co-
efficient! is defined as

C15
C0

@S2~ t !#1/2$@R~ t !2R~ t !#2%1/2
. ~2!

From a signal-processing perspective, maximizingC1 corre-
sponds to maximizing the shape matching between the input
stimulusS(t) and the system responseR(t), whereas maxi-
mizingC0 corresponds to taking account of both signal am-
plification and shape matching. These measures thus enable
one to quantify the two noise-induced effects associated with
SR, i.e., the original notion of signal amplification@2# and
the later notion of optimal stimulus-response coherence
@1,4,20–22#.

More recently, information-theoretic measures~e.g.,
transinformation! have been used to characterize SR and
ASR in model neurons@25,26# and the cricket cercal sensory
system@27#. These measures will not be considered here.
However, it is worth noting that in an ASR study with the
FHN model @26#, it was shown that a peak in the cross-
correlation measuresC0 andC1, respectively, for a particular
level of input noise is matched by a peak in the transinfor-
mation. Thus, for cases with subthreshold aperiodic input
stimuli, the addition of noise can optimize the information-
transfer rate, as well as second-order coherence measures.

III. BISTABLE-WELL SYSTEM

We first consider a symmetric bistable-well system with a
fluctuating barrier, as given by

dx

dt
52

]U

]x
1j~ t !, ~3!

where

U~x!52@A2S~ t !#
x2

2
1
x4

4
, ~4!

A is a constant,S(t) is an aperiodic~zero-mean! input signal,
j(t) is Gaussian white noise with zero mean and autocorre-
lation ^j(t)j(s)&52Dd(t2s), and the angular brackets de-

note an ensemble average. In this system,S(t) modulates the
barrier height and a disturbance is needed to switch the sys-
tem’s state point between the two wells. This disturbance is
provided byj(t), which acts as a thermal bath coupled to the
system. For a given barrier height, a certain temperature
~noise level! will allow the system’s state point to overcome
the barrier and switch wells. Thus, for a given noise level,
the transition or hopping rate will be a function of the barrier
height and hence a function ofS(t). This bistable-well sys-
tem differs from the original bistable-well system of Ref.@2#:
in the latter, the barrier height was alternately lowered for
each of the wells, whereas in the former, the barrier height is
lowered symmetrically for both wells.

To compute the power-norm measures@Eqs.~1! and~2!#,
we assume that the system’s responseR(t) is characterized
by the time-varying two-way transition or hopping rate@28#.
In the numerical simulations,R(t) was actually a mean tran-
sition rate formed by passing an averaging window over a
train of impulses corresponding to the transition times. The
numerical results@29# for the bistable-well system with an
aperiodic input signalS(t) are given in Fig. 1.~In the simu-
lations, A51.! Shown are the ensemble-averaged values
~and standard errors! of C0 andC1 as a function of the input
noise intensityD. ~The solid curves are from the theory to be
described below.! The results forC1 @Fig. 1~b!# show char-
acteristic signatures of ASR behavior: a rapid rise to a clear
peak and then a slow decrease for higher values of noise
intensity. The results forC0 @Fig. 1~a!#, on the other hand,
increase monotonically with input noise intensity. The rea-
son for this effect is described below.

We have developed a general theory for ASR. This theory
requires an estimation of the mean first-passage time for a
stochastically forced particle to pass over a barrier or reach a
boundary. The mean first-passage time corresponds to the
mean transition time of the system, from which the cross-
correlation measures~i.e.,C0 andC1) can be calculated. In
the case of the bistable-well system, we use Kramers’s clas-
sic result for the escape time of a particle over a potential
barrier @30,31#. This then serves as an estimate of the mean
transition rate between the wells. The Kramers rate is valid
in the regime where the noise level is low compared to the
barrier height. For large noise levels, the analysis breaks
down and the notion of well hopping is better described as a
boundary-crossing problem.

Using Kramers’s formula, the ensemble-averaged rate of
escape for a particle in a potential well is given by

^R~ t !&.
1

2p
AU9~xmin!uU9~xmax!uexpFU~xmin!2U~xmax!

D G ,
~5!

where xmin and xmax are the locations of one of the well
minima and the maximum~barrier! for a potential function
U(x). ~For a symmetric bistable-well system, the escape rate
out of the other well is identical.!

To determinexmin andxmax, we set@from Eq. ~4!#

U8~x!52@A2S~ t !#x1x350 ~6!

and solve to obtain the rootsx50,6@A2S(t)#1/2. This gives
xmin52@A2S(t)#1/2 andxmax50. It can then be shown that
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U9~xmin!52@A2S~ t !#, ~7!

U9~xmax!52@A2S~ t !#, ~8!

U~xmin!52@A2S~ t !#2/4, ~9!

U~xmax!50. ~10!

Substituting these expressions into Eq.~5! yields

^R~ t !&.
A2
2p

@A2S~ t !#expF2@A2S~ t !#2

4D G . ~11!

Equation~11! is an estimate of the mean transition rate
and a function of both the noise intensityD and the input
signal S(t). The power-norm measures are computed by
cross-correlating this rate withS(t) and averaging over time.

S(t) is independent of ensemble averaging so the ensemble-
averaged power norm in Eq.~1! is

^C0&5^S~ t !R~ t !&[S~ t !^R~ t !&. ~12!

To computeC0, we use a time lag that corresponds to the
peak in the input-output cross-correlation function@see Eq.
~1!#. For notational simplicity, this time lag is suppressed but
always implied.

In general, an explicit expression for the power norm does
not exist. However, for the case where the signal amplitude
is small compared to the barrier height, i.e.,S(t)2!A2, the
rate can be expanded in a Taylor series inS(t). We first
expand the exponent in Eq.~11! and drop theS(t) depen-
dence in the amplitude to yield

^R~ t !&.Qexp@2Q1DS~ t !#, ~13!

whereQ5K0A/A2p, Q5A2/4D, and D5A/2D. The pa-
rameterK0 is included to account for normalization factors
that may arise in the construction of the mean transition rate.
The validity of these approximations will be discussed later.

Equation ~13! can then be substituted into Eq.~12! to
calculatê C0&. In the special case whereS(t) is a Gaussian-
distributed signal, the time average can be performed explic-
itly to obtain the result

^C0&.QDexp@2Q1D2S2~ t !/2#S2~ t !. ~14!

For an arbitrary non-Gaussian signal, the rate Eq.~13! is
expanded to first order inS(t) to obtain

^C0&.QD exp@2Q#S2~ t !. ~15!

This expression will be invalid for very small values of
noise, namely, when (A/4D)2S2(t)*1. However, for such
noise levels, the rate will be very low and the errors will not
be important. In the numerical simulations, we used a Gauss-
ian noise source forS(t), so to calculateC0, we use Eq.~14!.
It should be noted that even this expression has already used
a small-signal approximation and should be considered to be
only slightly more accurate than the fully expanded form
given by Eq.~15!.

The expression for̂C0& given by Eq.~14! rises to a maxi-
mum value and then decreases withD. However, numeri-
cally, it was observed that^C0& does not decay but continues
to increase withD @Fig. 1~a!#. The reason for this discrep-
ancy is that for larger noise levels, i.e.,D*A2/4, the Kram-
ers escape rate is no longer a good approximation for the
transition rate. This is due to the fact that in the calculation
of the escape rate, quasistationarity is assumed and for large
D, this assumption is violated. To account for the behavior
of the system in the large-D regime, we use a simple linear-
ramp model for the well@32#. In this approximation, a
straight line is drawn betweenxmin andxmax. We then con-
sider the first-passage time problem of a particle beginning at
xmin and reachingxmax. We shift the axis so thatxmin50.
Therefore, escape from the well reduces to

ẋ52h1j~ t !, ~16!

FIG. 1. Ensemble-averaged values~triangles! and standard er-
rors of the ~a! power normC0 and ~b! normalized power norm
C1 versus 2D, whereD is the intensity of the input Gaussian white
noise, for the bistable-well model with a weak aperiodic input sig-
nalS(t). S(t) was formed by convolving Gaussian correlated noise
~with correlation time equal to 150 s! with a 100-s unit-area sym-
metric Hanning window filter. The same input signalS(t), with
variance equal to 2.1431023 and total time length equal to 3000 s,
was used for all results presented.C0 andC1 were computed for
each trial and then averaged over 700 trials using different seeds to
generate the Gaussian white noise. The theoretical prediction for
^C0& from Eq. ~14! using the Kramers rate withK051 is shown in
~a! ~solid and dashed curve!. It is seen to match the data for small
values ofD, but breaks down for larger values ofD where a linear
curve ~solid and dotted line! is shown to fit the data as expected
from Eq. ~20!. The theoretical prediction for̂C1& from Eq. ~27!
~solid curve! is shown in~b!, with K150.019.
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where h is the slope of the ramp andj(t) is zero-mean
Gaussian white noise as in Eq.~3!. Escape occurs at
x5L[L01S(t). The first-passage time of such a problem is
given by a converging infinite series@32#. Keeping only the
first term, which should capture the essential qualitative pic-
ture, we have

t0}
DF1k1

l1
2 expS 2hL

2D D , ~17!

where

F152sinhk1LS L22
sinh2k1L

4k1
D 21

, ~18!

tank1L52Dk1 /h, l15
h2

4D
1Dk1

2 . ~19!

For largeD, k1;p/(2L)2h/(pD) and F1 saturates to a
function of L. Thus t0}D

21F1(L)/L. The mean transition
rate is given byR(t)51/t0, which increases withD, whereas
the Kramers rate Eq.~13! saturates with increasingD. Ex-
panding the rate inS(t) and substituting into Eq.~12! yields

^C0&}DS
2~ t !. ~20!

Hence^C0& continues to increase withD as observed in Fig.
1~a!. This effect is not observed in excitable systems because
of the saturating effect of the refractory time in such systems.
This issue is discussed in greater detail in Sec. V.

The ensemble-averaged normalized power norm is given
by

^C1&.K C0

N@S2~ t !#1/2
L .

^C0&

N@S2~ t !#1/2
, ~21!

where

N25@R~ t !2R~ t !#2. ~22!

Previously, we made no distinction between the sample tran-
sition rate and the ensemble-averaged transition rate. How-
ever, in the calculation ofN, we need to account for the
time-dependent fluctuations inR(t) due to the noise. There-
fore, we use the ansatz that

R~ t !.^R~ t !&1h~ t !, ~23!

where^R(t)& is the Kramers escape rate@given by Eq.~13!#
andh(t) is a stochastic component that arises from the input
noise, withh(t)50 andh2(t)[s(D). @The stochastic com-
ponenth(t) does not affect the computation of^C0&.#

Substituting Eq.~23! into Eq. ~22! yields

N25^R~ t !&22^R~ t !&21s~D !. ~24!

Then, for the rate Eq.~13!, whereS(t) is a Gaussian stochas-
tic process,

^R~ t !&.Q exp@2Q1D2S2~ t !/2# ~25!

and

^R~ t !&2.Q2exp@22Q12D2S2~ t !#. ~26!

This then leads to an expression for^C1& @for S(t) Gaussian#

^C1&.
D@S2~ t !#1/2

$exp@D2S2~ t !#211s~D !Q22exp@2Q2D2S2~ t !#%1/2
. ~27!

The general case@for smallS2(t)# is obtained by expanding
to linear order inD2S2(t).

The noise-induced variances(D) can be estimated by
using an analogy to shot noise in electronics@33#. Consider
the case where the signalS(t) is zero. The occurrence of a
transition from one well to the other is a random process and
is analogous to the random arrival of an electron at a device.
In this analogy, the mean transition rate corresponds to the
current. For a pure Poisson process, the variance of the mean
transition rate is proportional to the time average of the mean
transition rate. In the present case, the hopping process will
not be a pure Poisson process. However, we can use as an
estimate for the variance

s~D !5K1^R~ t !&, ~28!

whereK1 is a constant. We can then insert Eq.~28! into Eq.
~27!.

The theoretical curves are plotted in Fig. 1. It can be seen
in Fig. 1~a! that the expression for̂C0& based on the Kram-

ers rate@Eq. ~14!# matches the data for small values ofD but
breaks down for larger values where^C0& behaves linearly,
as predicted. The theoretical curve for^C1& @Eq. ~27!#
matches the data as seen in Fig. 1~b!.

Finally, we mention that the theory predicts the shape of
^C1& even when it is outside the range of its validity. This is
an interesting circumstance. The theory is only properly
valid for ranges ofD near the peak location of̂C1&. For
large values of noise, the Kramers rate no longer holds.
However, in this regime, the stochastic contribution of
s(D) dominates, so it does not matter so much that the
Kramers rate is now a poor approximation. For very small
values ofD, the smallS(t) expansion breaks down, but the
rate is so low that the errors are also suppressed.

IV. INTEGRATE-AND-FIRE NEURONAL MODEL

SR has been demonstrated in a variety of neuronal models
@12,20–22,24,32,34–36#, including integrate-and-fire models
@22,32,36#. Here we consider an integrate-and-fire neuronal
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model with a subthreshold aperiodic input signal:

v̇52av1a2d1S~ t !1j~ t !, ~29!

wherev represents the voltage of the model neuron,a and
d are constants,d/a is the barrier height,S(t) is a subthresh-
old aperiodic input signal, andj(t) is Gaussian white
noise with zero mean and autocorrelation
^j(t)j(s)&52Dd(t2s). The firing threshold for this system
is set atv51.

To compute the power-norm measures, we assume that
the system’s responseR(t) is characterized by its time-
varying mean firing rate.~This is a valid assumption for
many types of sensory neurons@37#.! In the numerical simu-
lations, the time-varying mean firing rate was formed by
passing a unit-area symmetric Hanning window filter over an
impulse train corresponding to the firings of the model. The
numerical results@29# for the integrate-and-fire neuronal
model with a subthreshold aperiodic input signal are given in
Fig. 2. ~In the simulations,a50.5 andd50.01.! Shown are
the ensemble-averaged values~and standard errors! of C0
andC1 as a function of the input noise intensityD. ~The

solid curves are from the theory to be described below.! The
model exhibits clear ASR characteristics:^C0& and ^C1&,
respectively, rapidly increase to a peak and then slowly de-
crease with increasing input noise intensity.

These numerical results can be understood analytically.
We assume throughout thatS2(t)!d. We first note that the
average interpulse intervalT̄ is given by the first-passage
distribution of the Ornstein-Uhlenbeck process Eq.~29!. For
the regime where@d2S(t)#2!2D, a simple expression for
T̄ @38# is given by

T̄;
A2Dp

@d2S~ t !#
expF @d2S~ t !#2

2Da G . ~30!

The ensemble-averaged mean firing rate is then given by

^R~ t !&.
d

A2Dp
expF2d212dS~ t !

2Da G , ~31!

where we have employed a smallS(t) expansion.
The ensemble-averaged power norm is given by Eq.~12!.

Substituting Eq.~31! into Eq. ~12! yields

^C0&.QD exp@2Q1D2S2~ t !/2#S2~ t !, ~32!

where

Q5K0d/A2pD, Q5d2/~2Da!, D5d/~Da!,
~33!

whereK0 is a free parameter. This form is for the case where
S(t) is a Gaussian-distributed signal. For a general signal,
we can make an expansion inS(t), as it was done with the
bistable-well system in Sec. III.

The calculation of^C1& is also similar to that for the
bistable-well system. We use Eq.~27! directly, usingQ, D,
and Q as defined in Eq.~33!. We use the relation
s(D)5K1^R(t)&, where^R(t)& is given by Eq.~31!, to ob-
tain

^C1&.
D@S2~ t !#1/2

$exp@D2S2~ t !#211K1Q
21exp@Q2D2S2~ t !/2#%1/2

.

~34!

Curves based on Eqs.~32! and~34! are shown in Fig. 2. The
theory for ^C0& and ^C1&, respectively, matches the data,
predicting the location of the maximum. There is a deviation
for larger values ofD because the mean firing rate expres-
sion Eq.~31! begins to break down in that regime.

V. HODGKIN-HUXLEY NEURONAL MODEL

In our original ASR paper@14#, we studied the dynamics
of the FHN model because~i! it had been used in a number
of physiologically motivated SR studies@12,20,24# and~ii ! it
provided a simple representation of the firing dynamics of
sensory neurons. Here we consider the dynamics of a more
sophisticated neuronal model@39#, namely, the HH model
@40#:

FIG. 2. Ensemble-averaged values~circles! and standard errors
of the ~a! power normC0 and ~b! normalized power normC1 ver-
sus 2D, whereD is the intensity of the input Gaussian white noise,
for the integrate-and-fire neuronal model with a subthreshold ape-
riodic input signalS(t). S(t) was formed by convolving Gaussian
correlated noise~with correlation time equal to 150 s! with a 100-s
unit-area symmetric Hanning window filter. The same input signal
S(t), with variance equal to 1.9331026 and total time length equal
to 3000 s, was used for all results presented.C0 and C1 were
computed for each trial and then averaged over 300 trials using
different seeds to generate the Gaussian white noise. The theoretical
predictions~solid curves! from Eqs.~32! and ~34! are given in~a!
and ~b!, respectively, withK050.22 andK150.05.
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Cv̇52gNam
3h~v2vNa!2gKn

4~v2vK!2gL~v2vL!1I

1S~ t !1j~ t !, ~35!

ṁ5am~v !~12m!2bm~v !m, ~36!

ḣ5ah~v !~12h!2bh~v !h, ~37!

ṅ5an~v !~12n!2bn~v !n, ~38!

whereC is the capacitance;v is the membrane potential; the
g’s are constant conductances;vNa , vK , andvL are constant
equilibrium potentials;m, h, andn are variables representing
sodium activation, sodium inactivation, and potassium acti-
vation channels, respectively;I is an input current;S(t) is a
subthreshold aperiodic input signal;j(t) is zero-mean
Gaussian white noise as in Eq.~3!; and thea andb are rate
constants. For our study, we use the classic Hodgkin-Huxley
6.3 °C values for the squid giant axon@40# shown in Table I.
For these parameter values, the voltage-dependent rate con-
stants have the form

am5
0.1~v140!

12exp@2~v140!/10#
, bm54 exp@2~v165!/18#,

~39!

ah50.07 exp@2~v165!/20#,

bh5
1

11exp@2~v135!/10#
, ~40!

an5
0.01~v155!

12exp@2~v155!/10#
,

bn50.125exp@2~v165!/80#, ~41!

wherev has units of mV and the rates have units of ms21.
As with the integrate-and-fire model~Sec. IV! and the

FHN model @14#, we assume that the HH model transmits
information about input stimuli via temporal changes in its
firing rate. We use this assumption to compute the power-
norm measures.~In the numerical simulations, the time-
varying mean firing rate for the HH model was formed by
passing a unit-area symmetric Hanning window filter over an
impulse train corresponding to the firings of the model.! The
numerical results@29# for the HH model with a subthreshold
aperiodic input signalS(t) are given in Fig. 3.~In the simu-

lations,I50.! Shown are the ensemble-averaged values~and
standard errors! of C0 andC1 as a function of the input noise
intensityD. ~The solid curves are from the theory to be de-
scribed below.! As with the integrate-and-fire model~Fig. 2!
and the FHN model@14#, the HH model exhibits clear ASR
characteristics: the respective power-norm measures rapidly
increase to a peak and then slowly decrease with increasing
input noise intensity.

Below we develop a general theory for ASR in excitable
membranes. This theory will be applicable to both the HH
model and the FHN model, as well as other excitable-
membrane models. An excitable membrane with stochastic
forcing will generally have the form@41#

Cv̇5I ion„v,$wi~v !%…1I ~ t !1j~ t !, ~42!

wherev is the membrane potential,$wi(v)% are the fraction
of open channels for a set ofn ion-channel types,I (t) is
input current, andj(t) is zero-mean Gaussian white noise.
Thewi(v) channels obey equations of the form

TABLE I. Parameter values used in the theory and simulations
for the Hodgkin-Huxley neuronal model.

C Membrane capacitance 1mF/cm2

vL Leakage reversal potential 254.4 mV
gL Leakage conductance 0.3 mS/cm2

vK Potassium reversal potential 277 mV
ḡK Maximal potassium conductance 36 mS/cm2

rK Potassium ion-channel density 18 channels/mm2

vNa Sodium reversal potential 50 mV
ḡNa Maximal sodium conductance 120 mS/cm2

rNa Sodium ion-channel density 60 channels/mm2

FIG. 3. Ensemble-averaged values~squares! and standard errors
of the ~a! power normC0 and ~b! normalized power normC1 ver-
sus 2D, whereD is the intensity of the input Gaussian white noise,
for the Hodgkin-Huxley neuronal model with a subthreshold aperi-
odic input signalS(t). S(t) was formed by convolving Gaussian
correlated noise~with correlation time equal to 0.25 s! with a 0.25-
s unit-area symmetric Hanning window filter. The same input signal
S(t), with variance equal to 1.2331021 and total time length equal
to 10 s, was used for all results presented.C0 andC1 were com-
puted for each trial and then averaged over 200 trials using different
seeds to generate the Gaussian white noise. The theoretical predic-
tions ~solid curves! based on Eqs.~32! and ~34! are given in~a!
and ~b!, respectively, usingQ5K0(0.04510.12e), Q5(0.32
12.76e)/D, and D50.24/D, with K050.55, K151, and e51.1
mV.
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ẇi5a i~v !~12wi !2b i~v !wi , ~43!

wherea i(v) andb i(v) are rate constants. Eachwi channel
has an asymptotic value ofwi ,`(v)5a i(v)/@a i(v)1b i(v)#
and a characteristic time scale oft i(v)5@a i(v)
1b i(v)]

21. To computeC0 andC1 as functions ofD, we
need to obtain the mean firing rate due to a subthreshold
input signal plus noise. This is done by transforming Eq.~42!
into a ‘‘double-well’’ Langevin equation, where the Kramers
escape rate from one minimum to the other can be used for
the mean firing rate.

For a subthreshold input signal, the voltage is at a stable
resting pointv5vR . Consider a subthreshold input signal of
the form I (t)5I 01S(t), whereI 0 is a dc signal andS(t) is
an arbitrary zero-mean time-varying signal that is slow and
small in amplitude.~The meaning of slow and small will be
defined later.! The resting voltage is found by setting@from
Eq. ~42!#

v̇5ẇi50. ~44!

Assume that

v r~ t !5 v̄ r1aS~ t !, ~45!

wherev̄ r can be found numerically or analytically by setting
S(t)50 in Eq. ~44!. The parametera can be found by sub-
stituting Eq.~45! into Eq.~44! @with S(t) intact# and solving
to first order inS(t).

In general, Eq.~42! contains a wide range of time scales.
If all the channels are either fast or slow, then Eq.~42! can
be simplified to a first-order Langevin equation. If there is
not a separation of time scales, a multidimensional problem
must be studied. In the HH model studied here, there is only
a partial separation of time scales and thus the theory is not
directly applicable in the present format. However, as will be
shown, it can be modified to account for this lack of full
separation.

The approximation we use is to let all fast channels be
instantaneous and all slow channels be fixed near rest. This
assumption works because we are only concerned with the
generation of action potentials from a resting state. Once an
action potential is generated, the slow variables play a role in
restoring the membrane potential~i.e., voltage! to rest@42#.
Therefore, we divideI ion into fast and slow currents

I ion5I f~v,$wf%!1I s~v,$ws%!, ~46!

where$wf% and$ws% are the sets of fast and slow channels,
respectively. The fast channels are taken to be instantaneous,
i.e.,wf5wf ,`(v), and we fix the slow channels to the resting
value

ws5ws,`~v5vR!. ~47!

With these assumptions, Eq.~42! becomes

Cv̇5I f„v,$wf ,`~v !%…1I s„v,$ws,`~vR!%…1I 01S~ t !1j~ t !,
~48!

which can be rewritten as

Cv̇5u„v,S~ t !…1j~ t !, ~49!

where u52U8(v). For a subthreshold input signalI (t),
U(v) is a double-well~bistable! potential, with minima at
v1 andv3 and a maximum atv2. ~Note thatv1[vR .) Action
potentials occur whenv jumps from nearv1 to v3 over the
barrier atv2. We knowv1(S)5v r5 v̄ r1aS(t). We find v2
andv3 by solvingu(v,S)50, although it is not necessary to
find v3 for this calculation.

The ensemble-averaged mean firing rate^R(t)& for the
system is given by the Kramers rate

^R~ t !&.
1

2pC
AU9~v1!uU9~v2!uexp@CU0 /D#, ~50!

whereU0[U(v1)2U(v2). The ratê R(t)& is a function of
S(t), and this dependence must be made explicit. We reex-
pressU0 as

U0~S!5E
v1~S!

v2~S!

u~v8;S!dv8. ~51!

Expanding for smallS(t), it can be shown that

U0~S!5E
v1~0!

v2~0!

u~v8;0!dv81F E
v1~0!

v2~0!

]Su~v8;0!dv8GS~ t !,

~52!

where we have used the fact thatu(v1,0)5u(v2,0)50. In
addition,

U9~v1!52u8~v1!, ~53!

U9~v2!52u8~v2!, ~54!

where the prime refers to derivative with respect tov. The
ensemble-averaged mean firing rate is then given by

^R~ t !&.
1

2pC
Auu8~v1!uu8~v2!exp@CU0~S!/D#, ~55!

whereU0(S) is given by Eq.~52!.
We first apply this formulation to the FHN model, which

we write in the form@14#

Cv̇52v~v22 1
4 !2w1AT2g1j~ t !, ~56!

ẇ5v2w, ~57!

wherev(t) is a voltage variable,w(t) is a recovery variable,
AT525/(12A3) is a threshold voltage,g5B2S(t), B is a
constant parameter corresponding to the signal-to-threshold
distance,S(t) is the input signal, andj(t) is the standard
noise source. In the FHN model, the fast channel is modeled
by the nonlinear term in Eq.~56! and is already taken to be
instantaneous. The slow channel is given by Eq.~57!. The
fixed point of the system, obtained by settingv̇5ẇ50, is
approximately given byv r.21/(2A3)2g1(A3/2)g2. The
time scales of the two variables can be estimated by linear-
izing around the resting value. We find thatw has a charac-
teristic time oftw;1 andv has a time oftv;6C/5. Thus,
for C very small,v is a much faster variable thanw.

We then set the slow channel to its resting value~given by
w.v r) to obtain the one-dimensional Langevin equation
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Cv̇.u~v !1j~ t !, ~58!

where

u~v ![2U8~v !52~A2v/41v3!, ~59!

A521/~12A3!1A3/2g2. ~60!

The potentialU(v) is a double well with one minimum at
v15v r and a maximum atv2.21/(2A3)1g. Applying Eq.
~55! yields

^R~ t !&}
B

2pA3C
expF22A3C@B323B2S~ t !#

3D G . ~61!

~This result differs slightly from the result in Ref.@14#.! The
cross-correlation measures^C0& and^C1& are then computed
as in Ref.@14# and Sec. III. It should be noted that the prob-
lem of increasing firing rate~and hencêC0&) in the large-
D regime is not encountered in the FHN model@14#. The
reason for this is that the FHN model and other excitable
systems have an associated refractory or dead time. Thus,
after a firing event has occurred, there is a finite amount of
time before another one can occur. This refractory time im-
poses a saturation mechanism onto the firing rate.

We now apply the formalism to the HH model. We use
the parameters of Table I withI50. The resting potential of
the HH model forS(t)50 can be found numerically with the
result v̄ r5265 mV. Settingv r5 v̄ r1aS(t) and substituting
this into Eq. ~44! @with S(t) intact# gives the value
a50.86. Near resting potential, the characteristic time scales
are tv;1.4 ms,tm;0.24 ms,th;8.3 ms, andtn;5.6 ms.
Them channel is faster than the potentialv and theh and
n channels are slower. However, there is not a vast separa-
tion of time scales as in the FHN model. (C50.005 was used
in the numerical simulations for the FHN model@14#.! Em-
ploying the formalism, we would let them channel be in-
stantaneous and freeze theh andn channels to their resting
values. The effective Langevin equation would be given by

Cv̇.u„v,S~ t !…1j~ t !, ~62!

where

u„v,S~ t !…52gNam`
3 ~v !h`~v r !~v2vNa!

2gKn`
4 ~v r !~v2vK!2gL~v2vL!1S~ t !.

~63!

However, because there is not a large separation of time
scales, theh andn channels will tend to drift in response to
fluctuations inv. We note thath andn are ‘‘restoring’’ vari-
ables that will tend to increase the effective barrier. We can
account for this by ‘‘shifting the path’’ of the effective
Langevin equation to take into account the dynamics of the

slow channels. We do this by moving the resting values of
n and h. We perturb the resting value by a small amount
v r5 v̄ r1e. We then substitute this into Eq.~63! and expand
to linear order so that

u„v,S~ t !,e…5u„v,S~ t !,0…1]eu„v,S~ t !,0…e. ~64!

Both v1 and v2 will shift: v j5 v̄ j2@]eu( v̄ j ,0,0)/
u8( v̄ j ,0,0)]e, for j51,2, where v̄ j is the root of
u(v,0,0)50. This results in

U0~S!.E
v̄1

v̄2
@u~v8,0,0!1]eu~v,0,0!#dv8

1F E
v̄1

v̄2
@]Su~v8,0,0!#dv8GS~ t !, ~65!

u8~v j ,e,0!5u8~ v̄ j ,0,0!1@u9~ v̄ j ,0,0!

3@]eu~ v̄ j ,0,0!/u8~ v̄ j ,0,0!#1]eu8~ v̄ j ,0,0!#e.

~66!

Solving u(v,0,0)50 yields v̄15 v̄ r , v̄25262.38 mV.
We insert Eq.~64! into Eq.~52!, keep terms to linear order in
e andS(t), perform the definite integrals numerically, and
obtain

U0520.3222.76e10.24S~ t !, ~67!

u8~v1!520.2520.53e, ~68!

u8~v2!50.3211.05e. ~69!

Substituting these results into Eq.~55! gives

^R~ t !&5~0.04510.12e!exp$@20.3222.76e

10.24S~ t !#/D% ms21. ~70!

This rate can now be used in Eq.~32! for ^C0& and Eq.~34!
for ^C1&, using Q5K0(0.04510.12e), Q5(0.32
12.76e)/D, andD50.24/D. Curves based on Eqs.~32! and
~34! are shown in Fig. 3. The rates in the simulations were
expressed in units of s21. The calculated rate can be con-
verted to these units by multiplyingQ by a factor of 1000.
The theory for ^C0& and ^C1&, respectively, matches the
data, predicting the location of the maximum.

VI. CONCLUSIONS AND IMPLICATIONS

This work clearly shows that SR-type behavior is not lim-
ited to systems with periodic inputs. Thus, in general, noise
can serve to enhance the response of a nonlinear system to a
weak input signal, regardless of whether the signal is peri-
odic or aperiodic. These developments suggest that SR-type
dynamics could be exploited in systems with broadband in-
put signals. This could be particularly useful for the design
of signal-detection devices, such as superconducting quan-
tum interference devices@6,43#. This work also lends further
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support to the notion@14,16# that it may be possible to de-
velop ASR-based bioengineering techniques for improving
the function of neurophysiological sensory systems, such as
the somatosensory system. With such techniques, noise
could be introduced artificially into sensory neurons in order
to improve their abilities to detect arbitrary weak signals.
Techniques of this sort could be used to improve sensory

function in healthy individuals and individuals with sensory
thresholds that are elevated due to disease or normal aging.
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